Categories

Posts in this category

Sun, 02 Apr 2017

Perl 6 By Example: Idiomatic Use of Inline::Python


Permanent link

This blog post is part of my ongoing project to write a book about Perl 6.

If you're interested, either in this book project or any other Perl 6 book news, please sign up for the mailing list at the bottom of the article, or here. It will be low volume (less than an email per month, on average).


In the two previous installments, we've seen Python libraries being used in Perl 6 code through the Inline::Python module. Here we will explore some options to make the Perl 6 code more idiomatic and closer to the documentation of the Python modules.

Types of Python APIs

Python is an object-oriented language, so many APIs involve method calls, which Inline::Python helpfully automatically translates for us.

But the objects must come from somewhere and typically this is by calling a function that returns an object, or by instantiating a class. In Python, those two are really the same under the hood, since instantiating a class is the same as calling the class as if it were a function.

An example of this (in Python) would be

from matplotlib.pyplot import subplots
result = subplots()

But the matplotlib documentation tends to use another, equivalent syntax:

import matplotlib.pyplot as plt
result = plt.subplots()

This uses the subplots symbol (class or function) as a method on the module matplotlib.pyplot, which the import statement aliases to plt. This is a more object-oriented syntax for the same API.

Mapping the Function API

The previous code examples used this Perl 6 code to call the subplots symbol:

my $py = Inline::Python.new;
$py.run('import matplotlib.pyplot');
sub plot(Str $name, |c) {
    $py.call('matplotlib.pyplot', $name, |c);
}

my ($figure, $subplots) = plot('subplots');

If we want to call subplots() instead of plot('subplots'), and bar(args) instead of `plot('bar', args), we can use a function to generate wrapper functions:

my $py = Inline::Python.new;

sub gen(Str $namespace, *@names) {
    $py.run("import $namespace");

    return @names.map: -> $name {
        sub (|args) {
            $py.call($namespace, $name, |args);
        }
    }
}

my (&subplots, &bar, &legend, &title, &show)
    = gen('matplotlib.pyplot', <subplots bar legend title show>);

my ($figure, $subplots) = subplots();

# more code here

legend($@plots, $@top-authors);
title('Contributions per day');
show();

This makes the functions' usage quite nice, but comes at the cost of duplicating their names. One can view this as a feature, because it allows the creation of different aliases, or as a source for bugs when the order is messed up, or a name misspelled.

How could we avoid the duplication should we choose to create wrapper functions?

This is where Perl 6's flexibility and introspection abilities pay off. There are two key components that allow a nicer solution: the fact that declarations are expressions and that you can introspect variables for their names.

The first part means you can write mysub my ($a, $b), which declares the variables $a and $b, and calls a function with those variables as arguments. The second part means that $a.VAR.name returns a string '$a', the name of the variable.

Let's combine this to create a wrapper that initializes subroutines for us:

sub pysub(Str $namespace, |args) {
    $py.run("import $namespace");

    for args[0] <-> $sub {
        my $name = $sub.VAR.name.substr(1);
        $sub = sub (|args) {
            $py.call($namespace, $name, |args);
        }
    }
}

pysub 'matplotlib.pyplot',
    my (&subplots, &bar, &legend, &title, &show);

This avoids duplicating the name, but forces us to use some lower-level Perl 6 features in sub pysub. Using ordinary variables means that accessing their .VAR.name results in the name of the variable, not the name of the variable that's used on the caller side. So we can't use slurpy arguments as in

sub pysub(Str $namespace, *@subs)

Instead we must use |args to obtain the rest of the arguments in a Capture. This doesn't flatten the list of variables passed to the function, so when we iterate over them, we must do so by accessing args[0]. By default, loop variables are read-only, which we can avoid by using <-> instead of -> to introduce the signature. Fortunately, that also preserves the name of the caller side variable.

An Object-Oriented Interface

Instead of exposing the functions, we can also create types that emulate the method calls on Python modules. For that we can implement a class with a method FALLBACK, which Perl 6 calls for us when calling a method that is not implemented in the class:

class PyPlot is Mu {
    has $.py;
    submethod TWEAK {
        $!py.run('import matplotlib.pyplot');
    }
    method FALLBACK($name, |args) {
        $!py.call('matplotlib.pyplot', $name, |args);
    }
}

my $pyplot = PyPlot.new(:$py);
my ($figure, $subplots) = $pyplot.subplots;
# plotting code goes here
$pyplot.legend($@plots, $@top-authors);

$pyplot.title('Contributions per day');
$pyplot.show;

Class PyPlot inherits directly from Mu, the root of the Perl 6 type hierarchy, instead of Any, the default parent class (which in turn inherits from Mu). Any introduces a large number of methods that Perl 6 objects get by default and since FALLBACK is only invoked when a method is not present, this is something to avoid.

The method TWEAK is another method that Perl 6 calls automatically for us, after the object has been fully instantiated. All-caps method names are reserved for such special purposes. It is marked as a submethod, which means it is not inherited into subclasses. Since TWEAK is called at the level of each class, if it were a regular method, a subclass would call it twice implicitly. Note that TWEAK is only supported in Rakudo version 2016.11 and later.

There's nothing specific to the Python package matplotlib.pyplot in class PyPlot, except the namespace name. We could easily generalize it to any namespace:

class PythonModule is Mu {
    has $.py;
    has $.namespace;
    submethod TWEAK {
        $!py.run("import $!namespace");
    }
    method FALLBACK($name, |args) {
        $!py.call($!namespace, $name, |args);
    }
}

my $pyplot = PythonModule.new(:$py, :namespace<matplotlib.pyplot>);

This is one Perl 6 type that can represent any Python module. If instead we want a separate Perl 6 type for each Python module, we could use roles, which are optionally parameterized:

role PythonModule[Str $namespace] is Mu {
    has $.py;
    submethod TWEAK {
        $!py.run("import $namespace");
    }
    method FALLBACK($name, |args) {
        $!py.call($namespace, $name, |args);
    }
}

my $pyplot = PythonModule['matplotlib.pyplot'].new(:$py);

Using this approach, we can create type constraints for Python modules in Perl 6 space:

sub plot-histogram(PythonModule['matplotlib.pyplot'], @data) {
    # implementation here
}

Passing in any other wrapped Python module than matplotlib.pyplot results in a type error.

Summary

Perl 6 offers enough flexibility to create function and method call APIs around Python modules. With a bit of meta programming, we can emulate the typical Python APIs close enough that translating from the Python documentation to Perl 6 code becomes easy.

Subscribe to the Perl 6 book mailing list

* indicates required

[/perl-6] Permanent link